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Defendens Imperium Romanum®:
A Classical Problem in Military Strategy

Charles S. ReVelle and Kenneth E. Rosing

INTRODUCTION AND PROBLEM DESCRIPTION. In the third century of the
Common Era (CE), when Rome dominated not only Europe, but also North Africa
and the Near East, it was able to deploy fifty legions throughout the empire. In this
forward defense strategy even the furthermost areas of the empire were secured by
the on-site presence of an adequate number of legions of the Roman army.
However, the empire had lost much of its muscle by the fourth century CE and the
forces of Rome had diminished to only about twenty-five legions. It had thus
become impossible to station legions in sufficient strength at all of the forward
positions of the empire without abandoning the core.

A new defense in depth strategy was devised by the Emperor Constantine
(Constantine The Great, 274-337) to cope with the reduced power of the empire
[11]. His defense in depth used local troops to disrupt invasion and deployed
mobile Field Armies (FAs) to stop and throw back the intruding enemy, or to
suppress insurrection. The earlier forward defense strategy had provided a wall
around the empire denying any but the most modest of incursions—it even
allowed Roman forces to sally into barbarian lands to disrupt invasions as they
were being mounted. In place of Rome’s forces, the defense in depth strategy
substituted local part-time militias (who would be fighting for their own land and
families) to slow and fragment any invading barbarian army until the heavier
weight of an FA, dispatched from a distant area, could be brought to bear.

Each set of roughly six legions with ancillary cavalry, artillery, etc. forms an FA,
a unit of forces whose numbers are sufficient to secure any one of the regions of
the empire [2]. In the third century CE, Rome’s fifty legions or about eight FAs
could be allocated so that each of the eight provinces was secured by its own FA.
However, by the fourth century CE, only four FAs were available for deployment.
The regions of the empire are considered to be connected as shown in Figure 1,
where each region is represented as a circle (node). Movement along a line (edge)
between regions (nodes) represents a “step” and for a region to be securable, an
FA must be able to reach it in just one step [2].

A region is considered to be secured if it has one or more FAs stationed in it
already. On the other hand, thé region may be securable—that is, an FA may be
capable of deploying to protect that region in a single step, but only under a
special condition. An FA can be deployed from one region to an adjacent region
only if it moves from a region where there is at least one other FA to help launch
it. This is analogous to the island-hopping strategy pursued by General MacArthur
in World War II in the Pacific Theater—movement followed the chain of islands
already secured by troops left behind.

*Defending the Roman Empire
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Figure 1. The Empire of Constantine and its Eight Provinces

The challenge for Constantine was to allocate just four FAs to positions in the
eight regions of the empire. Constantine chose to place two at Rome, a symbolic as
well as strategic choice, and two at his new capital, Constantinople. With this
deployment, each region of the empire was either already secured or could be
reached by an FA in just one step—with the exception of Britain. To reach Britian
with an FA required an FA to move from Rome to Gaul, securing Gaul. Then, a
second FA needed to be launched from Constantinople to Rome. Only then could
an FA shift from Rome to Gaul, and finally an FA could move from Gaul to
Britian, a total of four steps for the field armies. Each of the four steps began from
a base that had two FAs present.

Here is another alternative, not necessarily better than Constantine’s strategy,
but illustrative of the moves that are legitimate. Suppose we place one FA in Gaul,
two in Rome, and one in Constantinople. Britian can now be reached in two steps,
which consist of moving an FA from Rome to Gaul and moving an FA from Gaul
to Britian—better for Britian than before. However, Asia Minor is now not
reachable in one step, but requires two steps: Rome to Constantinople and
Constantinople to Asia Minor. All the rest of the empire is just one step away. It is
not clear that this is better than Constantine’s strategy. Although the number of
steps to the worst-off region has been reduced to two, the number of regions that
are more than one step away from any assistance has gone from one to two.

Can a modern analyst do better than Constantine’s solution? “Better” may be
measured with respect to several criteria. One criterion is the number of regions
that cannot be reached in a single step; this number is to be reduced. For
Constantine’s solution, as we have just seen, that number is one. Another criterion
is the number of steps it takes to reach the worst-off node. Again, for Constantine’s
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choice, this number is four, the number of moves needed to reach Britian with
assistance. To do better than Constantine, one would need to do better with
respect to one of the criteria without degradation of the other. For example,
relative to the first criterion, an improvement would be to reach every region in
just one step. Alternatively, if one can reduce the number of steps to reach the
worst-off node without increasing the number of regions that are more than one
step away, the solution will be better. That is, if an analyst can keep the number of
nodes that can’t be reached in one step to just one, and can reduce the maximum
number of steps to reach the worst-off node to fewer than four, then the solution
will be better than Constantine’s. And of course, if all regions were made either
initially secure or reachable in one step, then the empire would be fully protected.

Still a third criterion concerns the consequences of a second war occurring
somewhere in the empire. We might want to minimize the number of regions that
can’t be reached or secured in the event of a second war or, conversely, we might
want to maximize the number of regions secured or covered in one step in the
event of a second war.

We may envision the fundamental problem as having at least two phases. In the
first phase, the number of FAs required may be an unknown, and we ask the
question, “What is the least number of FAs to be placed, and where should they
be sited, so that all regions of the empire are either secured or securable?” In the
second phase, we ask “How should a limited number of FAs (the number available
may be insufficient to secure or make securable all of the regions) be deployed to
achieve optimally some security objective such as the maximum number of regions
made secure or securable?” We present several models that address these criteria
in the remainder of this paper.

BASIC FORMULATIONS. The formulations we present next belong to the class
of 0,1 optimization problems that seek yes-or-no location decisions at discrete
points. These discrete siting problems, which most often consider distances mea-
sured on a network, constitute one of two classes of location problems. The other
class typically chooses sites from an infinite space of alternative locations and often
makes use of an Euclidean or other distance measure, Together, these two classes
of problems make up the family of problems referred to as Location Science or
Topothesiology. Several current texts and collections survey these problems and
the methods used to solve them; see [6], [7]. or [10].

The Set Covering Deployment Problem. The first formulation is called the Set
Covering Deployment Problem (SCDP). This formulation is a novel derivative of a
well-known problem, the Location Set Covering Problem ([16], [15], and [13]). In
the Location Set Covering Problem with demand nodes and eligible facility sites
scattered on a network or a plane, the problem is to find, and site, the least
number of facilities so that all points of demand have at least one facility within
some distance standard.

In the SCDP formulation, each region must either be secured by one or more
FAs or securable by an FA that can reach the region in a single step from a two-FA
region. We seek the least number of FAs to distribute among the regions so that
all regions are either secured or securable.

We let:

I = the set of demand areas/deployment sites;
x; = 1,0; the variable is 1 if region i contains one or two FAs and 0 otherwise;
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y; = 1,0; the variable is 1 if region i contains two FAs, and 0 otherwise;
N; = {jlregion j is one step from region i}

The objective is

Minimize z = Y x; + Y.y,

iel iel
Subject to:
x,+ Y y=1 foreveryiel (1)
JEN,
y;<x;, foreveryiel (2)

The constraints (1) say that every region must be secured or securable. If
x; = 1, then region i is secured—without regard to the presence of any regions one
step away that contain two FAs. If x; = 0, then at least one of the regions one step
away from region i must have two FAs—this to make region i securable in a single
step. Of course, it is possible that for some i, x; = 1 and also there is at least one
region one step away from region i that has two FAs. Nonetheless, one of these
events is required to occur for each i € I. The constraints (2) say that there cannot
be two FAs in a region unless there is at least one FA in the region.

The objective function of the SCDP is the number of regions with one or two
FAs plus the number of regions with two FAs. This is exactly the number of FAs
deployed. For example, suppose there is just one FA in region A and two FAs in
region B. The value of the first term of the objective function is two since both
regions A and B have either one or two FAs. The value of the second term is one
since only region B has two FAs. The objective function is 2 + 1 = 3. Minimizing
the objective function minimizes the number of FAs deployed subject to the
constraints.

If it were felt that an FA could not be isolated (i.e., must have at least one other
FA within one step), then we could modify the problem by adding an additional
constraint:

Y x;>x;, foreveryiel 3)
JEN;

The Maximal Covering Deployment Problem. There is also a natural problem that
is complementary to the SCDP. Its goal is to allocate a limited number of FAs to
the regions in such a way as to maximize the number of regions that are securable
in a single step or already secured by the presence of an FA. We call this problem
the Maximal Covering Deployment Problem (MCDP). The MCDP is also a relative
of a widely known problem, the Maximal Covering Location Problem [3]. The
Maximal Covering Location Problem resembles the Location Set Covering Prob-
lem in that it assumes that demand nodes and eligible facility sites are dispersed
on the plane or network. In contrast to the Location Set Covering Problem, it
seeks to site a limited number of facilities in such a way that the greatest number
of demand nodes has one or more facilities within a distance standard.

The logical constraints of the MCDP fix in advance the number of FAs, but say
that an area is “covered” only if it has an FA present on site (it is secured) or if
there is at least one position only one step away that has two FAs located there (it
is securable). Coverage of every region is not required but is sought as a goal. One
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new type of variable needs to be introduced for the MCDP. It is:

u; = 1,0: the variable is 1 if region i is secured or securable in a
single step. it is 0 otherwise. '

The problem as structured can be stated as:
Maximize Z = Y u;

i€l
Subject to:
u;<x;+ ),y foralliel (4)
JEN;
Vi X foralli e[ (5)
Y x;+ Y.y, = p (p Field Armies) (6)
iel iel

Of course, a positive coefficient reflecting the relative importance of each region i
could multiply each u, term in the objective.

The maximal covering deployment model doesn’t deal with how far away (the
number of steps) any of the uncovered nodes are. That is, if a node is not covered
in one step, there is no requirement that it can be covered in two steps, or three
steps, etc. Furthermore, the model as stated does not deal with the issue of a
second war.

Several methods are available to “solve” integer programs. Each method’s utility
varies with the characteristics of the program. We choose to solve the MCDP as a
relaxed linear program and then impose the integer requirements if necessary.
This means that the three sets of zero-one variables are relaxed in the linear
program and are allowed to range continuously between zero and one. The
replacement definitions are: 0 <x; < 1; 0 <y, < 1; and 0 < u; < 1. The resulting
program can be solved easily by any of the numerous linear programming packages
available. Some or all of the variables in the solution obtained via linear program-
ming may lie strictly between zero and one. Such non-zero-one solutions are
resolved by the technique of branch and bound, an add-on option generally
packaged with linear programming solvers.

Branch and bound begins with the linear programming solution and fixes one
non-zero-one variable first to 1 and then to 0. Both of the two resulting problems,
the one fixing the variable to 0, the other fixing it to 1, are then solved using linear
programming. This process of successively fixing non-zero-one variables to 0 or 1 is
called branching and produces a bifurcated or tree-like structure of sequential
solutions. The branching process continues until an integer feasible solution is
found.

The objective value of such an integer feasible solution forms a bound for the
problem, If other nodes are branched from and if solutions with objective values
higher than the bound result, none of these solutions can be optimal. In a
minimising problem, all solution nodes (solutions that have not yet been branched
on) with more costly objectives whose variables are not all 0, 1 can be cut off. That
is, they need not be searched further because they can never develop an integer
feasible solution whose objective value is less than the one already found. Other
integer-infeasible solutions on the tree may be branched from until either a
feasible solution with a lower value of the objective is developed (giving a new
bound) or until all developed solutions have objective values that exceed the
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objective value of the best integer solution. Branch and bound cannot be counted
on to resolve all problems to 0,1 solutions efficiently. It has shown itself to be
effective on many 0,1 location problems [12], but for certain types of constraint
sets, the number of nodes that must be resolved is so huge that practical limits on
computer memory or time preclude the use of this method.

We solved the MCDP problem for the empire as shown in Figure 1, with p = 4
FAs to be allocated among the eight regions. Six alternate optima were found, all
of which protected the entire empire—all regions of the empire were either
secured or securable in a single step. Of course, these alternatives could also have
been obtained by complete enumeration (evaluating all possibilities) in this small
problem or by solving the SCDP. Only one of the six alternatives placed FAs at
Rome.

Dantzig cuts were used to generate six alternate optima. Dantzig discovered and
developed the technique of cutting away (making invalid) unwanted or integer
infeasible solutions in the context of the famous Knapsack Problem [5]. These cuts,
which we added in the re-solution of the linear programming problem, simply
require that the current solution be excluded in all subsequent analysis. In order to
apply the cuts, the zero-one variables that are 1 in the current solution are
summed, and their sum, in a new problem, is constrained to be 1 less than the
number of such variables.

Of the alternate optimal solutions produced by solving the MCDP, the first all
zero-one solution (0 cuts, see Table 1) placed two FAs in Iberia and two FAs in
Egypt. We then solved the MCDP a second time, adding a constraint that says the
sum of the x; plus the sum of the y; in Iberia and Egypt is less than or equal to
three. This constraint excludes no possibilities other than the previous solution.
The result is the second solution (cut 1) listed in Table 1—namely, two FAs in
Iberia and two in Constantinople. To expose further alternate optimal solutions
would require not only a constraint that excludes the first solution, but one that
excludes this second solution as well. That is, we add a constraint that says that the
sum of FAs in Iberia and Constantinople is less than or equal to three. The cuts
concluded when the first sub-optimal solution was found. In total, six alternate
optimal deployments of four FAs were found, each deployment securing or making
securable all of the eight regions of the empire.

The optimal solutions of Constantine’s problem are shown in Table 1. The first
column, headed “cuts”, indicates the number of cut constraints required to get the
particular solution shown on that particular line. The first line (0 cuts) shows the
solution found with no additional constraints. The last column, headed “B & B”,
shows the number of branch and bound nodes that had to be evaluated in order to
arrive at an optimal integer feasible solution. The remaining columns refer to the

TABLE 1. SOLUTIONS: ROMAN EMPIRE

cuts BRI IBE GAU NAF ROM EGY CON AMI B&B
0 2 2 0
1 2 2 1
2 2 2 3
3 1 2 1 3
4 2 2 4
5 2 2 14

BRI = Britian, IBE = Iberia, GAU = Gaul, NAF = North Africa,
ROM = Rome, EGY = Egypt, CON = Constantinople, AMI = Asia Minor
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eight regions of the Empire and each is headed by a three-letter abbreviation that
is clarified in an underline to the table. The numbers in the body of the table
indicate the number of FAs stationed in the various regions. Each of the following
tables has the same form.

Discussion of the Alternate Optima of the MCDP. The single “Roman solution”
deployed two FAs in Rome, one FA in Britian, and one in Asia Minor (Table 1,
cut 3). Despite the advantage of placing legions in Rome (hence the term “Roman
solution”), this deployment suffers from a reduced capability to respond to a
second war occurring somewhere else in the empire. Looking at Figure 1 and
envisioning this positioning of FAs, one can see that if a war occurred in any of the
five unsecured regions, the response to that war would then leave four regions
without protection in the event of a second war. That is, no FA could reach the
remaining four regions in a single step. In fact, no FA could be launched anywhere
in the empire as no two-FA regions would remain.

On the other hand, the equal optimal to the “Roman solution”, which consists
of two FAs in Iberia and two FAs in Egypt (Table 1, cut 0) performs better than
the Roman solution when it comes to protection in the event of a second war. The
worst case situation for this deployment would be a first war in Rome itself or in
North Africa. It does not matter whether the response to this first war comes from
Iberia or from Egypt. In either situation, two regions would be out of reach in a
single step. This is a better outcome than occurs in the Roman solution where up
to four regions could not be reached in the event of a second war. The as yet
unanswered question is how to discover these robust solutions, robust in the sense
that they do well even in the event of a second war.

FURTHER COMPUTATIONAL EXPERIENCE

Pax Britannica. Until well into the 19" century Britian possessed sufficient
resources to keep many capital ships in all key regions of interest. With (generally)
six “Battle Fleets” (BFs), each composed of roughly twenty ships of the line,
Britian pursued a forward defense policy for some 150 years. Around the end of
the 19™ century, with declining British power, the change to steam propulsion, and
the rise of Germany as a maritime power, this strategy had to be revised [9]. Even
though the increasing mobility and power of the modern ship allowed the reduc-
tion of the BF to around eight capital ships each (with their support ships and
auxiliaries), Britian had only four BFs in 1900 [2]. With six key regions this
necessitated a shift to a defense in depth. First Sea Lord John Fisher brought
three BFs to home (British) waters and stationed one BF in the Mediterranean.
His principle reason was the heightening European tension and the increasing
naval powers of Germany [8].

The rules of movement of BFs are the same as those of the FAs of the Roman
Empire. One BF must be present in a region to launch a second. Now however,
since we are all at sea, a step is counted as passing through one of the key regions.
The six key regions are identified in Table 2 and their “one step contiguity” is
shown in Figure 2; the identifiers of the key regions are across the top and down
the left side. An “X” indicates that one region is directly reachable from the
other, a one-step move for the BFs.

The strategy of Fisher results in only three of the six regions (Britian, The
Mediterranean, and The West Indies) being secured or securable in one step.
The worst off region (The Far East) is five steps away [2].
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TABLE 2. SOLUTIONS: BRITISH EMPIRE

cuts WIN BRI MED CGH SAS FEA B&B
0 2 2 0
1 1 1 2 0
2 2 2 1
3 2 2 3
4 2 1 1 2
5 2 2 0
6 2 2 8
7 2 2 7
8 2 2 4
9 1 1 2 5

10 2 1 1 6
11 2 2 6
12 2 2 14

WIN = West Indies, BRI-Britian, MED = Mediterranean,
CGH = Cape of Good Hope, SAS = South Asia, FEA = Far East

"WIN BRI MED CGH SAS FEA
WIN X X X
BRI X X
MED X X X
CGH X X X
SAS X X X
FEA X X

Figure 2. Contiguity Matrix, British Empire. For clarification of abbreviations see Table 2.

Thirteen alternate optimal solutions to the MCDP are displayed in Table 2. All
key regions of The British Empire are either secure with the presence of a BF or
they can be reached by a BF, launched from a two-BF region, in one step. The
greater flexibility (larger number of optimal configurations) is a function of the
reduction in the number of regions that have to be covered from eight (Roman
Empire) to six (British Empire).

Pax Americana. An application of the MCDP to the strategic network of regions
of import to the USA demonstrates that the method is not merely of historical
interest. While the USA is not being forced into a defense in depth strategy by
declining economic and political power, in this post-colonial, post-right-by-con-
quest period, certain foreign stationings are problematic or impossible.

The definition of the Unit of Force (UF, a unit analogous to the FA or BF) for
the Post-Cold War United States with its plethora of military arms is more
problematic. Arquilla and Fredricksen [2] base their calculations on a study by
Aspin [1] (a former secretary of defense). They arrive at four UFs, each consisting
of roughly three divisions of infantry, three carrier battle groups, and five air wings
with their required auxiliaries and support units.

The 15 equal optimal solutions are given in Table 3 and the one-step contlgulty
pattern on which the solutions are based is shown in Figure 3. This figure indicates
the one-step moves possible for UFs. In all of the solutions in Table 3 the “empire”
is either secured or securable with one step from a region hosting two UFs. The
large number of equal optimals is hardly surprising when we are dealing with four
UFs and a total of only five regions. The regions are named in the underline to the
associated Table (Table 3).
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TABLE 3. SOLUTIONS: AMERICAN EMPIRE

cuts USA EUR NEA SAS EAS B&B
0 2 2 0
1 2 1 1 1
2 2 1 1 1
3 1 1 2 2
4 2 2 2
5 2 1 1 3
6 2 2 5
7 2 1 1 6
8 1 2 1 1
9 2 2 5

10 2 2 9
11 1 2 1 12
12 1 1 2 12
13 2 1 1 13
14 2 2 12
15 2 2 15

USA = United States, EUR = Europe, NEA = Near East,
SAS = South Asia, EAS = East Asia

USA EUR NEA SAS EAS

USA X X X
EUR X X

NEA X X X

SAS X X
EAS X X

Figure 3. Contiguity Matrix, American Empire. For clarification of abbreviations see Table 2.

CONCLUSIONS. We have structured a classical problem on the deployment of
military forces as a pair of 0,1 programming problems. As far as we are aware,
neither the Set Covering Deployment Problem nor the Maximum Covering De-
ployment Problem has previously been defined. Once a new problem is formally
stated, other applications frequently occur. For example, several applications have
appeared for the Maximum Covering Location Problem, a model developed for
locating emergency service in order to maximize the population that can be served
within a distance standard; see [4] and [14].

We also demonstrate the utility of Dantzig cuts to reveal alternate optimal
solutions by making infeasible each solution as it is found. We are not aware of
similar uses of Dantzig cuts to expose a sequence of alternate optimal solutions
(and stopping when the first sub-optimal is found). This technique could, however,
also be useful to explore the sub-optimal region in the immediate neighborhood
of the optimal solution. In such a case, as each cut is added, the next-best sub-
optimal solution would be produced. The technique can be used to back off from
the optimal solution or explore alternate optima in other 0,1 problems as well.

In the computational experience we have shown that the relaxed linear pro-
gramming version of the problem solves in 0, 1 variables with either no branch and
bound or with only modest amounts of it. In general, we have observed that the
greater the number of cuts appended, the greater the amount of branch and bound
required to resolve the integer infeasibilities (see Table 1-3).

Perhaps most interesting from the standpoint of combinatorial optimization,
however, is the fact that a mathematical program has effectively solved a puzzle of
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some fame. The reduction of the puzzle to a mathematical programming form
suggests the possibility that other puzzles—some of which may have significant
applications—have related types of formulations.
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